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Abstract 
 
This paper presents a novel approach to damage identification based on the phenomenon of 
elastic waves propagation. The theoretical background is the dynamic Virtual Distortion 
Method, which is capable of modelling both a reference excitation signal propagated in the 
structure over a time domain and a perturbed signal due to damaged locations. The related 
methodology is presented including a brief description of experimental verification. 
Numerical example with successful, multi-damage case identification is demonstrated. 
Advantages of the approach as well as its challenging points are discussed. 
 
 
1 Introduction 
 
Our purpose in this paper is to propose a novel approach to the inverse dynamic analysis 
problem making use of the phenomenon of elastic wave propagation in engineering structures.  
 
Generalising the VDM approach for dynamic problems, a time-dependent influence matrix D  
is defined, describing structural response to locally generated unit impulses. Pre-computation 
of the time-dependent matrix D  allows for decomposition of the global dynamic structural 
response into components caused by external excitation in undamaged structure and 
components describing perturbations caused by internal defects. 
 
The proposed, time-domain-based methodology of data processing for damage identification 
(VDM software) fits well to the following scheme of measurements:  

i) wave generator produces a low frequency impulse (e.g. of sine shape, 1-10 ms 
period), close to a resonance frequency, providing long-distance propagation of 
elastic wave,  

ii) few, well-located, distant sensors collect measurements of frontal part of the 
generated wave,  

iii) if the received structural response differs significantly from the reference response 
(of undamaged structure), the collected measurements are transmitted to a 
computer centre for further data processing (VDM-based damage identification). 
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2 Dynamic influence matrix 
 
We will be dealing with dynamic analysis, so we need to introduce a time factor into the VDM. 
 
Any form of dynamic excitation can be composed from series of short impulses (see Fig. 2.2). So 
we calculate influence matrix as a 3-dimensional matrix of dynamic responses obtained for unit 
impulse excitations applied in the time instant t=0 (Fig. 2.3a). It is important to notice that we 
can simulate this impulse load by applying initial velocity conditions in Newmark's integration. 
Having calculated all the columns of the influence matrix Dij, which gathers the dynamic 
response for impulse excitations imposed in time instant t=0, it appears that we should compute 
the following matrices as well for the impulse excitations applied in the successive time instants 
τ (Fig. 2.3b). Fortunately, we do not need to do that, thanks to the following, obvious 
relationship: 
 

�
�
�
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=τ
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)t(D
ij

ij                  (2.16) 

 
where Dij is the already calculated dynamic influence matrix. So for all our further purposes we 
have only one time-dependent influence matrix computed for unit impulse excitation applied at 
the beginning of the assumed time period.  
 

 
 

Fig. 2.2  Short impulses composing a dynamic excitation 
 
 

 
 

Fig. 2.3  Unit impulse excitation applied 
a) at the beginning of the assumed time period 

b) at an arbitrary time instant τ 
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3 Experimental check of concept feasibility 
 
A 90 cm long, aluminium, cantilever beam with mounted piezo-wave generator (Fig. 3.1a) and 
piezo-sensor (Fig. 3.1b) was tested: i) as a healthy, intact structure producing a reference 
response and ii) as a damaged structure (perturbed response) affected by corrosion, modelled as a 
series of cuts in order to account for local stiffness change rather than mass change. The exciting 
full sine impulse of the period 0.007s was applied. The essence of the damage identification is to 
solve the inverse dynamic problem, which means introducing such modification to the beam 
model that the numerical curve fits the experimental curve in the best possible way. The result of 
the damage identification (utilising the experimental response) for the beam, discretised into 25 
finite elements, is shown in Fig. 3.4. Let us note that the detected damage zone is spread over 
several finite elements including the really damaged ones. 
 
a)  b) 

  
 

Fig. 3.1  Photos of the actuator (a) and the sensor (b) mounted on an aluminium beam 
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Fig. 3.4  Result of damage identification for the aluminium beam damaged in the middle part 
(real damage in element No. 12 and 13) 
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4 Dynamic approach to damage identification 
 

4.1 VDM-based damage identification 

4.1.1 Modelling of wave propagation 
 
Let us describe the dynamic response of the strain increment ( )tAε∆  in the location A  and the 
time instance t  as the superimposed response caused by impulses of the so-called virtual 
distortion increments ( )τεα

0∆  generated in the locations α  and the time instances τ  (cf. Fig. 
4.1): 

( ) ( ) ( )��
≤

∆−=∆
t

AA tDt
τ α

αα τετε 0 ,                  (4.1) 

where the dynamic, time-dependent, influence matrix ( )τα −tDA  describes the corresponding 
dynamic response of the strain in the location A  and the time instance t , caused by the unit 
impulse virtual distortions forced in the locations α  and the time instances t≤τ . Note that it 
is sufficient to compute only the matrix ( )tDAα , which stores the response for the appropriate 
unit impulse distortion forced in the initial time instant 0=τ . The virtual distortion 
increments ( )τεα

0∆  model excitations caused in locations α  by the piezoelectric transducers. 
In the paper, we assume that small Greek subscripts (α ) run through all locations of wave-
generators while the capital Latin ones ( A ) run through locations of wave-receivers (sensors). 
The elements of the influence matrix ( )tDAα  can be determined through the integration of the 
motion equations (e.g. using the Newmark’s method) computed for the unit impulse 
excitation generated sequentially in the structural elements α . The unit impulse excitation can 
be introduced in the form of initial velocity conditions: ( ) mtPv ∆=0 , where P  denotes the 
so-called compensative force corresponding to locally generated unit virtual distortion 
impulse 10 =ε , t∆  is the integration time step, and m  is the mass concentrated in the 
charged node of the loaded structural element α . Assuming (for simplicity of presentation) a 
discrete model of a truss structure (Fig. 4.1), we can describe the transient function for the 
wave propagation generated in members α  and received in member(s) A . To this end it is 
necessary to determine in advance, the time dependent dynamic influence matrix ( )tDAα , 

where t  runs through all time steps of the dynamic analysis: Tt ,0= . Having the influence 

matrix computed, we can calculate the superposition (4.1), where ( )τεα
0∆  describes (for the 

sequence of τ  instances) the shape of the excited signal. Then, we can achieve the form of the 
strain in location A  and the time period T,0  by summing the strain increments for all 

successive time instances Tt ,0∈ : 

( ) ( ) ( ) ( )ttt AA
t

AA εετεε
τ

∆+−=∆=�
≤

1                  (4.2) 

In this way, the storage of the influence matrix ( )tDAα , allows us to determine the transient 
function (between locations α  and A ) for any shape of the excited signal. 
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Fig. 4.1  Cantilever truss subject to piezo-excitation 
 

4.1.2 Modelling of damage 
 
Let us apply the above-described, influence matrix-based approach to the damage influence 
description. Three new, time-dependent, influence matrices ( ( )tDAi , ( )tDiα , ( )tDij ) will be 
introduced. The method of computation of the matrices is similar to the one described in the 
previous chapter. In the case of any perturbation of elastic wave propagation caused by 
defects in structural members i  (between the locations α  of the wave generators and the 
location A  of the wave receivers), it is necessary to generalise the formula (4.1) adding the 
component ( )tR

Aε∆  related to the perturbation caused by these defects: 

( ) ( ) ( ) ( ) ( ) ( ) ( )� ��
≤

�
�

�
�
	


 ∆−+∆−=∆+∆=∆
t i

iAiA
R
A

L
AA tDtDttt

τ α
αα τεττετεεε 00 ,            (4.3) 

where ( )tL
Aε∆  is the part of the strain increment caused by virtual distortion increments 

( )t0
αε∆  modelling piezoelectric excitations, whereas ( )tR

Aε∆  is the component caused by 

virtual distortion increments ( )ti
0ε∆  simulating defects. From now on, we assume that small 

Latin indices ( i , j , k , l ) run through all presumed locations of possible defects. The defect-
simulating virtual distortion increment can be expressed by the following formula: 

( ) ( ) ( )tt iii εµε ∆−=∆ 10 ,                   (4.4) 

where ( )tiε  denotes the strain in member i  and the time instance t , while iii EE ′=µ  
denotes the ratio of the damaged member Young’s modulus to the initial one. Therefore, the 
parameter 1,0∈iµ  specifies the size of the defect in location i  (actually 1=iµ  means that 

there is no damage, while 0=iµ  means that the member i  is completely damaged so that it 
can sustain no stresses). If we assume several possible defect locations i  (eventually, all 
structural elements of the structure), we can agree that the vector iµ  specifies also the 
distribution of these defects. 
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The above relation (6.4) comes from the more general formula: 
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,                            (4.5) 

in which virtual distortions simulate material parameter modifications (e.g. material 
redistribution iii AA ′=µ ). Now, let us express the strains ( )tiε∆  in the formula (4.4) through 
the formula analogous to equation (4.3): 

( ) ( ) ( ) ( ) ( ) ( ) ( )� ��
≤

�
�

�
�
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Analogously, the increment ( )tL
iε∆  is caused by the virtual distortion ( )t0

αε∆ , modelling 

piezoelectric excitations, while the increment ( )tR
iε∆  is caused by the defect-simulating 

virtual distortions ( )tj
0ε∆ . Now, the following relation, between the defect parameters iµ  and 

the virtual distortion increment ( )ti
0ε∆  simulating this defect (in the time instance t ), can be 

reached: 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( )�
�

�
�
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Note that to achieve the above expression the following relation has been used: 

( ) ( ) ( ) ( ) ( ) ( ) ( )�����
<≤

∆−+∆=∆−=∆
t j

jij
j

jij
t j

jij
R
i tDtDtDt

ττ
τετετετε 000 0 .            (4.8) 

For the distinguished time instant t , the formula (4.7) represents a set of i  equations with 
ij =  unknowns ( )tj

0ε∆ . To obtain ( )tj
0ε∆  for the entire time period T,0 , we have to solve 

(step by step) the set (4.7) for all successive time instances Tt ,0∈ . Knowing the defect 

parameters iµ , the step by step (for the sequence of time instances t ) determination of the 

increments ( )ti
0ε∆  can be performed. Then, knowing ( )τε 0

i∆  for t,0∈τ , the strain 

increments in the observed location ( )tAε∆  can be calculated making use of the equation 
(4.3). Summing these increments, like in the expression (4.2), we can determine the function 
of the strains ( )tAε  in location A  and the time period T,0 . 
 

4.1.3 Damage identification 
 
Let us know formulate the inverse problem of damage identification requiring determination 
of the defect size and location (specified by the defect vector iµ ), knowing (from 

measurements) the functions of the strain response ( )tM
Aε∆  in locations A  to the known 

excitation ( )τεα
0∆  generated in locations α . Therefore, the problem leads actually to the 

determination of the vector iµ , where that assumed in advance locations i  (potentially the 
whole structure) should allow for every possible distribution of defects. Assume for the 
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objective function f  the sum of the following measures Af  of the distance between the 
observed response ( )tM

Aε  in location A  and the appropriate possible response ( )tAε , which 

depends on the defect-simulating virtual distortions ( )ij t µε ,0∆ : 

( )[ ]��� ==
A t

A
A

A tdff 2 ,                   (4.9) 

where 
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The most probable defect identification leads to the minimisation problem fmin , with 
respect to the control parameters iµ . To this end, the gradient approach can be applied, with 
the following analytical gradient calculated from the formulae (4.9), (4.10): 
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where the partial derivatives kj µε ∂∆∂ 0  can be determined from the following systems of 
equations obtained through differentiation of the formula (4.7): 
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,
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,
01

00

.    (4.12) 

Actually, for the distinguished time instant t , we have got here k  sets of equations, where 
every set consists of i  linear equations with j  unknowns (and of course kji == ). The 
iterative algorithm for the multi-defect identification requires calculation (from Eqs. (4.7) and 
(4.12)) of the defect-simulating distortion increments ( )ti

0ε∆  and their gradients ji µε ∂∆∂ 0 , 
for each time step of the dynamic analysis. Making use of these components, the objective 
function (4.9), (4.10) and its gradient (4.11) can be calculated. Having determined the 
gradient of the objective function, a modification of the material redistribution can be 
proposed: 

∆
∂
∂−=

i
ii

f
µ

µµ ,                  (4.13) 

where the step length ∆  can be adjusted e.g. due to the steepest descent optimisation strategy. 
Then, the calculation of the objective function and its gradient for the modified structure 
response can be performed in the next iteration. Alternatively, more advanced optimisation 
methods, e.g. conjugate gradient or variable metric, have been employed to look for the vector 

iµ , which minimises the objective function (4.9). 
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5 Numerical example of a truss structure 
 

5.1 Presentation of results 
 
A 40-element cantilever truss structure, shown in Fig. 5.1, consisting of 8 repeatable 5 m x 5 
m segments, has been analysed to test the DAMID code. All elements have the same tubular 
cross sectional area A=201 cm2 (65 cm diameter, 1 cm thickness) and Young’s modulus 
E=210 GPa. The structure was dynamically loaded with the sine excitation of the frequency 
f=34.5 Hz, opposite in phase (cf. Fig. 4.1), which has been applied in elements Nos. 36 and 
38, depicted in Fig. 5.1. The time of analysis has been set to t=0.05s with 500 time steps 
assumed. Four analyses have been performed. 
 
Analysis 1 
At first, one defect was assumed in the element No. 13 with µ13=0.2, shown in Fig. 5.1. The 
member No. 1 was chosen as sensor, receiving the propagated wave. The corresponding 
elastic wave detected by the sensor and the wave generated in undamaged structure are shown 
in Fig. 5.2. The convergence of the identification process is depicted in Fig. 5.3. The number 
of potentially damaged elements chosen arbitrarily for lowest computational cost was reduced 
to just one. 
 
Analysis 3 
Another analysis was done for a structure with four defects - in the element No. 13 with 
µ13=0.7, the element No. 23 with µ23=0.6, the element No. 28 with µ28=0.5, the element No. 
33 with µ33=0.4 - shown in Fig. 5.7. The strain wave detected by one sensor in element No. 1 
is depicted in Fig. 5.8. The convergence of the identification process, achieved with 5 
potentially damaged elements, is shown in Fig. 5.9. 
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Fig. 5.1  One defect in dynamic identification 
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Fig. 5.2  Elastic wave detected by 1 sensor for 1 damage case 
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Fig. 5.3  Damage identification convergence for 1 damage case 
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Fig. 5.7  Four defects in dynamic identification 
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Fig. 5.8  Elastic wave detected by 1 sensor for 4 damage case 
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Fig. 5.9  Damage identification convergence for 4 damage case 
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6 Final remarks 
 

6.1 General observations 
 
The new concept of time-dependent VDM has proved to be effective in solution of the inverse 
dynamic problem. The objective function, analogous to the static case, is expressed in terms 
of time-dependent influence matrix and virtual distortions. Unlike the static case, the number 
and location of sensors is not the key issue in dynamics. 
 
The major innovation of the proposed approach is successful application of the VDM to the 
solution of the inverse dynamic problem. The damage is modelled by the parameter µ (loss of 
stiffness) and the gradients of the objective function are calculated analytically. As a result the 
VDM-based software is very competitive in terms of effectiveness to other tools e.g. based on 
soft-computing methods. The authors are not aware of any other method than their own able 
to identify several simultaneous damage locations of different intensities by analysing the 
transient structural response. 
 
At start of the VDM-based analysis, the influence matrix D must be numerically calculated 
and stored. For real engineering structures the cost of creating this matrix may be quite 
significant. Therefore any information on probable damage location would be precious as the 
analysis could be concentrated on some selected part of the structure only. The main cost of 
numerical analysis by the VDM-based software is computation of the objective function 
gradient, which is very costly due to the necessity of performing nested loops over the time 
and damaged members domain. However this cost was significantly reduced by introducing 
the idea of ranking all elements by initial gradient and contracting the space of potentially 
damaged elements from all members to an arbitrarily chosen number of members (usually 
small compared to all members).  
 
The dynamic formulation of the VDM is a time-domain-based approach making use of data 
collected in many (e.g. 500) consecutive time steps and therefore capable of: 

• modelling the propagation of elastic waves in structures, 
• modelling damage in structural elements, 
• solving the inverse dynamic problem of damage identification i.e. identifying multi-

damage cases by comparing the undamaged and damaged structure responses. 
 

6.2 Problems of numerical modelling 
 
In numerical modelling of the VDM-based damage identification, the following problems 
must be taken into account and addressed appropriately: 
 
1) FE discretisation – when we start dealing with continual models (e.g. the beam model) it 

is important to think of their discretisation in advance. Assuming too small elements will 
result in high numerical cost and assuming too large elements will make it impossible to 
detect small defects (smaller than the element used). So it is important to find a 
compromise for a numerical analysis between the computational cost involved and the 
required defect accuracy. 
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2) Setting dynamic analysis parameters – it is crucial to set the number of time steps in the 
Newmark’s integration so that it is a compromise between the identification accuracy that 
we need (the more steps the better) and the computation time we allow for (the less steps 
the better). We should also remember to set the time of the whole analysis in such a way 
that only the front of the wave is considered. 

3) Optimal location of wave generators and sensors – when locating wave generators and 
sensors in the structure, engineering experience supported by experimental results may be 
utilised. There are such locations for actuators, which enable to generate a well-
propagating strain wave, in the contrary to others. On the other hand if we have some 
hints on where to expect the damage we could make use of the information contained in 
the objective function gradients. By analysing the ranking of gradients for undamaged 
structure we can point out such sensor locations, which “prefer” damage in expected 
places. 

4) Proper choice of the excitation frequency, close to some eigen-frequency but not 
affecting the stability of the system, providing long-distance propagation – when 
choosing the excitation for our model one should bear in mind that it affects the 
identification ability. High excitation frequency seems to be more adequate as it induces a 
wave of lower length, able to detect smaller defects. On the other hand, high-frequency-
excited wave does not propagate well into long distances. So the choice of the excitation 
frequency is a compromise between the identification ability and the propagation ability 
of the induced wave. 

 

6.3 Unsolved problems and future work 
 
It is known that the inverse problems of damage identification involve many local minima. 
Achieving the global minimum (true location and intensity of damage) is hardly possible for 
real-life data. False damage locations are often observed. Therefore the VDM-based approach 
has been first tested with numerical (noise-free) data and did prove to find the damage 
locations and intensities assumed a priori. The effectiveness of the method for experimental 
data will be the subject of future research. 
 
The accuracy of the multi-damage identification results, obtained through the VDM-based 
approach, presented in chapter 5, is high due to the fact that the measured response �M is 
noise-free i.e. generated numerically, not taken from experiment. The influence of noise is 
considered in the simple experiment described in chapter 3. The identification results for 
noisy data are not so accurate any more, but the damage location is indicated correctly, with 
some uncertainty (see Fig. 3.4). The uncertainty can be reduced by careful tuning of the 
numerical model to experimental data in order to achieve the most reliable response. 
 
The sensitivity analysis of the method is the next challenge. Preliminary analysis has been 
done. In-depth investigation should include first of all the impact of measurement noise on 
identification results. 
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